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Summary 

A reacting gas flows along a tube and passes over a catalytic coating which begins at x = O. A strong exothermic 
reaction which is temperature dependent occurs at the wall of the tube leading to a local "ho t  spot" near x = O. 
It is assumed that the surface temperature of the catalyst is controlled by conduction of heat through the metal 
wall of the tube, heat transfer into the gas being negligible, fhe  equations governing the gas concentration and 
the metal temperature are reduced to a pair of coupled integral equations which are solved numerically. The 
temperature distribution at the wall of the tube is determined and axial conduction of heat in the metal casing is 
shown to be important.  

1. Introduction 

Catalytic wall reactors are widely used in industry when the gas/solid catalytic reaction 
produces a large amount of heat. This heat can be efficiently removed by conduction 
through the metal wall of the reactor, leading to'. its quasi-isothermal ol~eration [1]. 
Temperature effects are most likely to be important where the gas first comes into contact 
with the catalytic coating. The existence of a "hot  spot" in the reactor may lead to an 
unwanted volume reaction or to local degrading of the catalyst. The purpose of this paper 
is to determine analytically the surface temperature of the catalyst in this region, when the 
reaction is so strong that significant temperature rises occur. As the quantity of heat 
produced at the Wall in the chemical reaction is temperature dependent, there will be a 

\ 

strong coupling between the concentration field in the gas and the heat conduction 
problem in the metal casing. 

Many authors have considered laminar boundary layer flow over a catalytic surface 
under isothermal conditions. Chambre [2] formulated the more general problem including 
the non-isothermal aspects of the reaction. A review of the relevant literature has been 
given by Chung [3]. More recently, work in this field has been concerned with the possible 
multiplicity of steady state solutions in flows involving an exothermic reaction at the solid 
boundary [4]. 

2. The mathematical model 

We shall consider the fully developed, steady Poiseuille flow of a single reacting gas 
through a tube of circular cross-section, bounded by a thin metal wall. The outer surface 
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of the metal wall is maintained at a uniform temperature. If z is the co-ordinate measured 
down the tube we shall assume that the catalytic coating, which is of negligible thickness, 
is applied to the region z >~ 0. When the gas first passes over the catalytic coating, a strong 
reaction occurs at the gas/metal  interface close to z = 0, which rapidly reduces the gas 
concentration and releases a large amount of heat per unit area. In a steady state the 
surface temperature of the catalyst, which greatly influences the speed of the reaction, 
must be such that the heat released at the wall can be conducted away, both axially and 
radially, by the metal. We shall show that the heat flux into the gas is relatively small. 
Downstream of z = 0, the gas concentration at the wall is small and the rate at which heat 
is released will be determined by the rate at which unreacted gas can diffuse to the wall 
from the centre of the channel, that is, the reaction is diffusion limited. In this region only 
moderate temperature rises are required to conduct the heat away across the metal wall. 

As is usual in these problems, concentration and temperature boundary layers begin in 
the gas at z = 0 and spread until they meet at the centre of the tube some distance 
downstream. We shall assume that this entry length is large compared with the z length 
scale of the region where the greatest reaction occurs. A boundary layer analysis is 
therefore appropriate. 

We shall consider the case in which the wall reaction is first order, but it is clear that 
the techniques used here may be applied equally well to the case of higher order reactions. 

3. The governing equations 

We consider the Poiseuille flow of a reacting gas down a long tube of radius a bounded by 
a metal wall of thickness l. We shall suppose that l is small compared with a, as this is the 
case of practical interest. The outer surface of the metal is maintained at the constant 
temperature T O . We assume that axial diffusion of mass and heat is small compared with 
axial convection. Thus in the region z < 0, where there is no catalytic wall reaction, the gas 
concentration will take the constant value c o . 

If c(p, z) and Tg(p, z) are the concentration and temperature of the gas respectively, 
where p is the radial co-ordinate, then in the gas 

{ 2} 
2u° 1 - ( p )  az°C D 0 O  Oo p~--~p , (1) 

2Uo{ I _ ( O ) 2 } 0 T g  a 0 ( 0Tg] 
o: ; op ° V )  (:) 

where u 0 is the mean velocity of the gas flow and D and a are the constant values of the 
molecular diffusivity and thermal diffusivity respectively. 

As we are concerned with thin, laminar boundary layers on p = a, Eqns. (1)and (2) may 
be written in the boundary layer form 

4u° (a  0c 02c 
= (3) a - D OP 2 , 

02r  4U°(a-p)-~-~-z =a . (4) 
a 0p 2 
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Within the metal wall, the temperature T(p,  z)  satisfies the steady heat conduction 
equation 

1 2 ( 0 T )  ~2T 0. (5) 
p ~p P-~p + ~z ~ =  

The boundary conditions are: 
(i) The temperature is prescribed at the outer edge of the metal 

T =  To at p =  a + l, all z 

and tends to its undisturbed value as [z[ ~ oc in the metal i.e. 

T ~  T o a s l z l ~ o o ,  a < p < a + l .  (6) 

(ii) In the gas 

C = co at z = O, O <~ p < a, 

Tg ~ To as z --* - oe, O < p < a. (7) 

Note that we cannot assume Tg = T o at z = 0, because the metal wall is heated in z < 0 by 
axial conduction and is not therefore at uniform temperature in this region. 

(iii) The temperature is continuous at the gas/metal  interface 

Tg = T at p = a, all z. (8) 

(iv) As we are considering the flow in a boundary layer on p = a, both the concentra- 
tion and the temperature of the gas must tend to their mainstream values at the edge of 
the boundary layer. (9) 

(v) We assume that the catalytic wall reaction in the region z > 0 is first order in 
concentration 

_ D  a c = { r ( T w ) . c  z > O  
on p = a (10) 

DO 0 z < O  

where 

1o) ) r ( T w ) = r  oexp  - ~  Tw (11) 

is the Arrhenius form of the reaction rate and Tw(z ) is the temperature at the wall. In Eqn. 
(11), r 0 is the rate constant, E is the activation energy and R is the gas constant. Note that 
r 0 is the effective reaction rate parameter at the undisturbed temperature T o and has the 
dimension of a velocity. 

(vi) The jump in the transverse heat flux at p = a equals the rate at which heat is 
produced there by the chemical react ion 

_xar or, { ac ~p +k-~-p = - q D ~ p  z > O  o n p = a  

0 z < O  

(12) 
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where K and k are the constant thermal conductivities of the metal and the gas 
respectively and q is the heat of reaction. 

At this stage, we can make a major simplification by assuming that the heat flux into 
the gas is much smaller than that into the metal. From boundary condition (12), we can 
see that this is valid if 

kl 
K---8 << 1 , (13) 

where 8 - D/r  is a typical boundary layer thickness in the gas. A representative value for 
k / K  is 2.5 × 10 -3 and therefore condition (13) holds provided 8/l is not too small. 
Obviously condition (13) cannot be uniformly valid in the boundary layer as 8 vanishes at 
z = 0, however it can be checked a postiori that the heat flux into the gas from this very 
small region (where 8 = kl /K) is negligible. Assuming that condition (13) holds, then 
almost all the heat generated at the gas /meta l  interface is conducted away by the metal 
and we do not need to consider the temperature problem in the gas any further. The heat 
flux into the gas can be calculated using a perturbation method, taking the present 
problem as the zeroth order solution. 

The equations governing the concentration problem in the gas and the temperature 
problem in the metal can be written in terms of the dimensionless variables 

y ,  _ a - P x* g c* c 
l ' l '  c 0 ' 

0* = ~oo- 1 where N = R--~o ° . 

We can see from boundary condition (10) that there is a natural length scale for p in the 
gas of D/r and hence from Eqn. (3) that the natural length scale for z in the gas is 
4uoDZ/ar 3. As both these length scales depend upon the unknown reaction rate, we have 
chosen to scale all lengths on l, the natural length scale for P and z in the metal. 

Dropping the starred notation, Eqns. (3) and (5) become 

0¢ 02C (15) 
fl3y Ox Oy 2 

and 

020 020 
- - + - - = 0  (16) 
0x 2 0y2 

where 

f 1 3  _ 4Uo lz 
aD 

(17) 

In the derivation of Eqn. (16), we have assumed that l << a. 
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From the Eqns. (6)-(12), the dimensionless boundary conditions satisfied by c(x, y) 
and 0(x, y) are 

0 = 0 a t y =  - 1 ,  allx, (18) 

0 ~ 0  a s l x l ~  oo, - l < y < 0 ,  (19) 

c = 1  a t x = 0 ,  y > 0 ,  (20) 

c ~ 1  a s y ~ o o ,  x > 0, (21) 

a_s_c=(X(Ow)c x > O  ony=O,  (22) 
3Y ~ 0 x < 0  

where 

Ow 
X(0w) = )t o exp 

1+ N 

r0l 
)t o = -~- (23) 

and Ow(x ) is the dimensionless wall temperature, 

3o= 
ay 

Q OC x > 0  
Oy 

0 x < 0  

o n y = 0  (24) 

where 

Q = qDc°----~E (25) 
KRT 2 • 

We can see that the nature of the solution is determined by 4 independent dimensionless 
parameters: N, )'0, Q and ft. The parameter N measures the dependence of the reaction on 
temperature, )~0 determines the speed of the reaction at the constant temperature T O and Q 
measures the strength of the reaction. The parameter f13 is a measure of the relative effects 
of convection and diffusion in the boundary layer when the spacial variables are scaled on 
l. In practice f13 is large which reflects the fact that the length l is not the appropriate 
length scale in the boundary layer. 

The method of solution that we shall adopt is to derive two coupled integral equations 
for the temperature Ow(x ) and the mass flux (~c/ay)y= o at the wall. These equations will 
be solved numerically and it is then straightforward matter to determine both the 
concentration distribution in the gas and the temperature distribution in the metal. 
However the quantity of most practical importance is Ow(x ). 

The gas concentration problem can be readily reduced to an integral equation by using 
Laplace transforms. Defining the Laplace transform 

~(p,  y ) =  fomC(x, y) e-P':dx (26) 
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we find that ?(p,  y)  is given by 

1 fl-1 -1/3 0C (p ,  0) Ai(flPl/3Y) 
?(P'Y) = p +  P Oy A'i(O ) (27) 

where Ai(~ ) is the Airy function [5]. 
Using the convolution theorem, we can formally invert Eqn. (27) and so by putting 

y = 0 and using boundary condition (22), we obtain the integral equation 

f ( x )  - 1  1 fxf(t)(x_t)-2/3dt (28) X(Ow(x)) B31/3r(- ) jo e 

where f (x )= (Oc/Oy)y= o is the dimensionless mass flux at the wall and X(Ow(x)) is given 
by Eqn. (23). Equation (28) is a weakly singular Volterra integral equation of the second 
kind for f (x)  and may be solved numerically for a given Ow(x), [6]. 

The solution to the heat conduction problem in the metal, defined by Eqn. (16) with the 
boundary conditions (18), (19) and (24), can be written in the form 

O(x, y) = Q fo°°f( X)G(x - X, y )dX (29) 

where G(x - X, y) is the Green's function for the problem, that is, the solution to the heat 
conduction equation which satisfies the boundary conditions (18) and (19), but replaces 
condition (24) by a unit point source of heat at x = X, the rest of the surface y = 0 being 
insultated. It may be shown by the method of images that 

1 Re[In coth 2 { ¼~r(x - X + iy) }]. G ( x -  X,y)=~--~ (3o) 

Hence by putting y = 0 in Eqn. (29), we find that 

O oo 
Ow(x) = -f~ f'o f (  X)ln{c°th2¼~r(x - X)}dX.  (31) 

This integral equation may be solved numerically to determine Ow(x ) provided f (x)  is 
known. Hence we have obtained two coupled integral equations (28) and (31). 

For the purpose of illustration we have chosen the following numerical values: N = 6.8, 
)t o = 7.2, Q =3.7  × 10 -1 and fl = 4.2. 

4. The solution for infinite reaction rate 

This represents an important limiting case of the previous theory in which the concentra- 
tion at the wall is zero for x > 0 because the gas at the wall is completely destroyed by the 
reaction. The results obtained are therefore independent of the assumed form of the 
reaction kinetics. 
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Formally taking X 0 = o¢, Eqn. (28) becomes 

Jo" f131/3F(2 ) f ( t ) ( x  - t)-2/3dt = 1 (32) 

which has the solution 

flF (2)35/6 x-1/3. (33) 
f ( x )  - 2~r 

This result can of course be obtained directly from Eqn. (15) by looking for a similarity 
solution. Using Eqn. (31), the corresponding wall temperature may be written in the form 

Ow~( X ) - Q f l F (  2 )35/6 - [ ~ X - 1 / 3 1 n (  coth2¼~r( x - X)}dX. 
4~r 2 "o 

(34) 

It is evident from this equation that O~v(X ) has magnitude flQ and that the corresponding 
dimensional temperature rise is of order 

(AT)~ qDc°[u°12] 1/3 
= x - d b - -  " ( 3 5 )  

Thus (AT)o o is proportional to l 2/3 and so as expected, decreases as the thickness of the 
metal wall decreases. The temperature rise also depends upon the radius of the tube a, via 
the shear of the velocity profile; uo/a, however (AT)o ~ is not sensitive to this parameter. 

The graph of O~(x)/flQ is shown in Fig. 1. The temperature profile has a sharp 
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Figure 1. The variation of O~(x)/flQ with x for )t o = o¢, •o = 7.2. 
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maximum near x = 0.3 and the effect of axial conduction of heat can be seen in the region 
x < 0. It is worth noting that if the effect of axial conduction in the metal is ignored, then 
the temperature rise at x = 0 is infinite. Hence axial conduction plays a crucial role in the 
determination of the maximum temperature in this case. 

We can easily show that if the reaction rate is finite, then the maximum temperature 
rise is reduced and consequently Off(x) gives an upper estimate of the dimensionless 
temperature rise. The temperature in the interior of the metal may be determined from 
Eqns. (29) and (30) if it is required. 

5. The surface temperature for a first order wall reaction 

To obtain the temperature at the gas/metal  interface we have to solve two coupled 
integral equations, (28) and (31). The numerical procedure that we adopted !nvolved 
approximat ingf(x)  by a piecewise linear function and then evaluating the integral in Eqn. 
(28) analytically. In this way we were able to generate a recurrence relation for the values 
o f f ( x )  at the end of each interval, provided that Ow(x ) was given [6]. Having obtained this 
result, Eqn. (31) was evaluated using a standard integration routine, to give us the value of 
Ow(x ) at the end of each interval. The final solution was then obtained by iteration. 

The graph of Ow(x)/fl Q against x is shown in Fig. 1 for a typical value of X0. It was 
found that of the four dimensionless parameters the quantity Ow(x)/flQ was most 
sensitive to X0, the main dependence of Ow(x ) on fl and Q being given by the factor flQ. 
Fig. 2 illustrates how the maximum value of Ow(x)/flQ varies with Xo- It was found that 
the position of the maximum temperature rise is 0.3 for X0 = oo and moves slowly away 
from x = 0 as ~0 decreases. 
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Figure 2. The variation of the maximum value of O~,(x)/flQ with )~o- 
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6. Conclusions 

We have determined the temperature distribution which may  be expected when a reacting 
gas flows over a catalytic coating of  negligible thickness, assuming that the reaction is first 
order  and that the heat flow into the gas is small compared  with the flux into the metal 
wall. In this problem, the quanti ty of  heat generated is a sensitive function of the wall 
temperature and so there exists a strong coupling between the concentrat ion field in the 
gas and the heat conduct ion problem in the metal casing. The maximum temperature rise 
possible occurs when the reaction rate is infinite and in this case, the results are 
independent  of  the assumed kinetics. The position and magnitude of the temperature 
max imum are determined by axial and radial conduct ion of heat in the metal wall 
surrounding the gas. 
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